Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 132, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532378

RESUMO

BACKGROUND: Cardiovascular diseases (CVDs) have the highest mortality worldwide. Human pluripotent stem cells (hPSCs) and their cardiomyocyte derivatives (hPSC-CMs) offer a valuable resource for disease modeling, pharmacological screening, and regenerative therapy. While most CVDs are linked to significant over-production of reactive oxygen species (ROS), the effects of current antioxidants targeting excessive ROS are limited. Nanotechnology is a powerful tool to develop antioxidants with improved selectivity, solubility, and bioavailability to prevent or treat various diseases related to oxidative stress. Cerium oxide nanozymes (CeONZs) can effectively scavenge excessive ROS by mimicking the activity of endogenous antioxidant enzymes. This study aimed to assess the nanotoxicity of CeONZs and their potential antioxidant benefits in stressed human embryonic stem cells (hESCs) and their derived cardiomyocytes (hESC-CMs). RESULTS: CeONZs demonstrated reliable nanosafety and biocompatibility in hESCs and hESC-CMs within a broad range of concentrations. CeONZs exhibited protective effects on the cell viability of hESCs and hESC-CMs by alleviating excessive ROS-induced oxidative stress. Moreover, CeONZs protected hESC-CMs from doxorubicin (DOX)-induced cardiotoxicity and partially ameliorated the insults from DOX in neonatal rat cardiomyocytes (NRCMs). Furthermore, during hESCs culture, CeONZs were found to reduce ROS, decrease apoptosis, and enhance cell survival without affecting their self-renewal and differentiation potential. CONCLUSIONS: CeONZs displayed good safety and biocompatibility, as well as enhanced the cell viability of hESCs and hESC-CMs by shielding them from oxidative damage. These promising results suggest that CeONZs may be crucial, as a safe nanoantioxidant, to potentially improve the therapeutic efficacy of CVDs and be incorporated into regenerative medicine.


Assuntos
Cério , Miócitos Cardíacos , Células-Tronco Pluripotentes , Humanos , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Diferenciação Celular , Antioxidantes/farmacologia , Doxorrubicina/farmacologia
2.
Stem Cell Res Ther ; 15(1): 31, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317221

RESUMO

BACKGROUND: Transcription factors HAND1 and HAND2 (HAND1/2) play significant roles in cardiac organogenesis. Abnormal expression and deficiency of HAND1/2 result in severe cardiac defects. However, the function and mechanism of HAND1/2 in regulating human early cardiac lineage commitment and differentiation are still unclear. METHODS: With NKX2.5eGFP H9 human embryonic stem cells (hESCs), we established single and double knockout cell lines for HAND1 and HAND2, respectively, whose cardiomyocyte differentiation efficiency could be monitored by assessing NKX2.5-eGFP+ cells with flow cytometry. The expression of specific markers for heart fields and cardiomyocyte subtypes was examined by quantitative PCR, western blot and immunofluorescence staining. Microelectrode array and whole-cell patch clamp were performed to determine the electrophysiological characteristics of differentiated cardiomyocytes. The transcriptomic changes of HAND knockout cells were revealed by RNA sequencing. The HAND1/2 target genes were identified and validated experimentally by integrating with HAND1/2 chromatin immunoprecipitation sequencing data. RESULTS: Either HAND1 or HAND2 knockout did not affect the cardiomyocyte differentiation kinetics, whereas depletion of HAND1/2 resulted in delayed differentiation onset. HAND1 knockout biased cardiac mesoderm toward second heart field progenitors at the expense of first heart field progenitors, leading to increased expression of atrial and outflow tract cardiomyocyte markers, which was further confirmed by the appearance of atrial-like action potentials. By contrast, HAND2 knockout cardiomyocytes had reduced expression of atrial cardiomyocyte markers and displayed ventricular-like action potentials. HAND1/2-deficient hESCs were more inclined to second heart field lineage and its derived cardiomyocytes with atrial-like action potentials than HAND1 single knockout during differentiation. Further mechanistic investigations suggested TBX5 as one of the downstream targets of HAND1/2, whose overexpression partially restored the abnormal cardiomyocyte differentiation in HAND1/2-deficient hESCs. CONCLUSIONS: HAND1/2 have specific and redundant roles in cardiac lineage commitment and differentiation. These findings not only reveal the essential function of HAND1/2 in cardiac organogenesis, but also provide important information on the pathogenesis of HAND1/2 deficiency-related congenital heart diseases, which could potentially lead to new therapeutic strategies.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células-Tronco Embrionárias Humanas , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo
3.
Pharmacol Res ; 169: 105642, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33933636

RESUMO

Anthracyclines including doxorubicin (DOX) are still the most widely used and efficacious antitumor drugs, although their cardiotoxicity is a significant cause of heart failure. Despite considerable efforts being made to minimize anthracycline-induced cardiac adverse effects, little progress has been achieved. In this study, we aimed to explore the role and underlying mechanism of SNX17 in DOX-induced cardiotoxicity. We found that SNX17 was downregulated in cardiomyocytes treated with DOX both in vitro and in vivo. DOX treatment combined with SNX17 interference worsened the damage to neonatal rat ventricular myocytes (NRVMs). Furthermore, the rats with SNX17 deficiency manifested increased susceptibility to DOX-induced cardiotoxicity (myocardial damage and fibrosis, impaired contractility and cardiac death). Mechanistic investigation revealed that SNX17 interacted with leiomodin-2 (LMOD2), a key regulator of the thin filament length in muscles, via its C-TERM domain and SNX17 deficiency exacerbated DOX-induced cardiac systolic dysfunction by promoting aberrant LMOD2 degradation through lysosomal pathway. In conclusion, these findings highlight that SNX17 plays a protective role in DOX-induced cardiotoxicity, which provides an attractive target for the prevention and treatment of anthracycline induced cardiotoxicity.


Assuntos
Cardiotoxinas/toxicidade , Doxorrubicina/toxicidade , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Nexinas de Classificação/metabolismo , Animais , Western Blotting , Cardiotoxinas/antagonistas & inibidores , Doxorrubicina/antagonistas & inibidores , Imunofluorescência , Células HEK293 , Humanos , Imunoprecipitação , Masculino , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Nexinas de Classificação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...